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ABSTRACT

This paper proposes new attacks on modulus of type N = p2q. Given k moduli of the

form Ni = p2i qi for k ≥ 2 and i = 1, ..., k, the attack works when k public keys (Ni, ei)
are such that there exist k relations of the shape eix −Niyi = zi − (ap2i + bq2i )yi or
of the shape eixi −Niy = zi − (ap2i + bq2i )y where the parameters x, xi, y, yi and zi
are suitably small in terms of the prime factors of the moduli. The proposed attacks

utilizing the LLL algorithm enables one to factor the k moduli Ni simultaneously.
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1. Introduction

The RSA cryptosystem was developed by Rivest et al. (1978) is the well-
known public key cryptosystem. The mathematical operations in RSA depend
on three parameters, the modulus N = pq which is the product of two large
primes p and q, the public exponent e and the private exponent d, related by
the congruence relation ed ≡ 1 (mod φ(N)) where φ(N) = (p − 1)(q − 1).
Hence, the di�culty of breaking the RSA cryptosystem is based on three hard
mathematical problems which is the integer factorization problem of N = pq,
the e-th root problem from C ≡Me (mod N) and to solve the diophantine key
equation ed+ 1 = φ(N)k.

RSA is most commonly used for providing privacy and ensuring authentic-
ity of digital data. Hence, many practical issues have been considered when
implementing RSA in order to reduce the encryption or the execution decryp-
tion time. To reduce the encryption time, one may wish to use a small public
exponent e. Logically, the RSA cryptosystem is likely to have faster decryption
if the secret exponent d is relatively small. The knowledge of secret exponent
d leads to factoring N in polynomial time. Thus, much research has been pro-
duced to determine the lower bound for d. Nevertheless, the use of short secret
exponent will encounter serious security problems in various instance of RSA.

Based on the convergents of the continued fraction expansion of e
N , Wiener

(1990) showed that the RSA cryptosystem is insecure when the secret exponent,
d < N1/4. Later, by using lattice basis reduction technique, Boneh and Durfee
(1999) proposed an extension on Wiener's work. It was determined that the
RSA cryptosystem is insecure when d < N0.292. The work proposed by Blömer
and May (2004) which combined lattice basis reduction techniques with contin-
ued fraction algorithm, showed that the RSA cryptosystem is insecure if there
exist integers x, y and z satisfying the equation ex−yφ(N) = z with x < 1

3N
1/4

and |z| < exN−3/4. In cases where a single user generates many instances of
RSA (N, ei) with the same modulus and small private exponents, Howgrave-
Graham and Seifert (1999) proved that the RSA cryptosystem is insecure in
the presence of two decryption exponents (d1, d2) with d1, d2 < N5/14. In
the presence of three decryption exponents, they improved the bound to N2/5

based on the lattice reduction method.

Then, Hinek (2007) showed that it is possible to factor k RSA moduli using
equations eid − kiφ(Ni) = 1 if d < N δ with δ = k

2(k+1) − ε where ε is a small

constant depending on the size of max Ni = piqi. Later, Nitaj et al. (2014)
proposed a new method to factor k RSA moduli Ni in the scenario that the
RSA instances satisfy k equations of the shape eix − yiφ(Ni) = zi or of the
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shape eixi − yφ(Ni) = zi with suitably small parameters xi, yi, zi, x, y where
φ(Ni) = (pi − 1)(qi − 1). The analysis utilized the LLL algorithm.

As described in May (2004) the moduli of the form N = p2q is frequently
used in cryptography and therefore they represent one of the most impor-
tant cases. In this work, we will look at a variant of the RSA modulus of
the form N = p2q. Examples of schemes that utilize the modulus N = p2q
are Fujioke, Okamoto and Miyaguchi Cryptosystem(1991), RSA-Takagi Cryp-
tosystem (1997), Okamoto-Uchiyama Cryptosystem (1998), HIME(R) Cryp-
tosystem (2002), Schmidt-Samoa Cryptosystem (2006) and AAβ Cryptosystem
(2012).

Variant designs of the RSA utilizing N = p2q exist because of various rea-
sons. For example the HIME(R) design became a standard in Japan because
it was able to "carry" more data securely than the existing RSA. On the other
hand, Takagi (1998) showed that the decryption process is about three times
faster than RSA cryptosystem using CRT if they choose the 768-bit modulus
p2q for 256-bit primes p and q. Additionally, AAβ Cryptosystem that has been
proposed by Ari�n et al. (2013) overcome Rabin's cryptosystem decryption
failure which was due to a 4-to-1 mapping by incorporating the hardness of
factoring integer N = p2q coupled with the square root problem as its cryp-
tographic primitive. The design for encryption does not involve "expensive"
mathematical operation.

Our contribution. Hence, in this paper, we introduce new attacks to
factor k moduli of the form Ni = p2i qi. The �rst attack is upon k-instances
(Ni, ei). The attack works when there exist an integer x, k integers yi and
k integers zi satisfying eix − Niyi = zi − (ap2i + bq2i )yi. We show that the k
moduli Ni = p2i qi can be factored in polynomial time

x < Nδ, yi < Nδ, |zi| <
|ap2i − bq2i |
3(ap2i + bq2i )

N1/3yi where δ =
k − 3αk

3(1 + k)
,

with N = mini Ni.

The second attack works when there exist an integer y, k integers xi and k
integers zi satisfying eixi − Niy = zi − (ap2i + bq2i )y. Similarly, we show that
the k moduli Ni = p2i qi can be factored in polynomial time

xi < Nδ, y < Nδ, |zi| <
|ap2i − bq2i |
3(ap2i + bq2i )

N1/3y where δ =
k(3β − 2− 3α)

3(k + 1)

with N = maxi Ni and mini ei = Nβ .
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For both attacks, we transform the equations into a simultaneous diophan-
tine problem and apply lattice basis reduction techniques to �nd parameters
(x, yi) or (y, xi). This leads to a suitable approximation of ap2 + bq2 which
allow us to apply a theorem proposed by Asbullah (2015) in order to compute
the prime factor pi and qi of each Ni = p2i qi simultaneously.

The layout of the paper is as follows. In Section 2, we begin with a brief
review on lattice basic reduction and simultaneous diophantine approximation
and also some useful results that will be used throughout the paper. In Section
3 and Section 4, we present our �rst and second attacks consecutively together
with examples. Then, we conclude the paper in Section 5.

2. Preliminaries

2.1 Lattice Basis Reductions

Let u1, ..., ud be d linearly independent vectors of Rn with d ≤ n. The set
of all integer linear combinations of the vectors u1, ..., ud is called a lattice and
is in the form

L =

{
d∑
i=1

xiui | xi ∈ Z

}
.

The set (ui, ..., ud) is called a basis of L and d is its dimension. The determinant
of L is de�ned as det(L) =

√
det(UTU) where U is the matrix of the ui's in the

canonical basis of Rn. De�ne ‖v‖ to be the Euclidean norm of a vector v ∈ L.
A central problem in lattice reduction is to �nd a short non-zero vector in L.
The LLL algorithm of Lenstra et al. (1982) produces a reduced basis and the
following result �xes the sizes of the reduced basis vector (see May (2003)).

Theorem 2.1. Let L be a lattice of dimension ω with a basis {v1, ..., vω}. The
LLL algorithm produces a reduced basis {b1, ..., bω} satisfying

‖b1‖ ≤ ‖b2‖ ≤ ... ≤ ‖bi‖ ≤ 2
ω(ω−1)

4(ω+1−i) det(L)
1

ω+1−i ,

for all 1 ≤ i ≤ ω.

One of the important application of the LLL algorithm is it provides a solution
to the simultaneous diophantine approximations problem which is de�ned as
follows. Let α1, ..., αn be n real numbers and ε a real number such that 0 <
ε < 1. A classical theorem of Dirichlet asserts that there exist integers p1, ..., pn
and a positive integer q ≤ ε−n such that

|qαi − pi| < ε for 1 ≤ i ≤ n.
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Lenstra, Lenstra and Lovász described a method to �nd simultaneous diophan-
tine approximations to rational numbers which they consider a lattice with real
entries (Lenstra et al. (1982)). Later, in Nitaj et al. (2014) state a similar result
for a lattice with integer entries as in the following theorem.

Theorem 2.2. (Simultaneous Diophantine Approximations). There is
a polynomial time algorithm, for given rational numbers α1, ..., αn and 0 < ε <
1 to compute integers p1, ..., pn and a positive integer q such that

maxi|qαi − pi| < ε and q ≤ 2n(n−3)/4 · 3n · ε−n.

Proof. See Appendix.

2.2 Approximation of The Prime in RSA

The following is a result by Asbullah (2015) which is the basis of our analysis
is given in the �rst and second attack on k moduli Ni = p2i qi. The following
lemma shows that any approximation of ap2+bq2 will lead to an approximation
of q and Theorem 2.3 is an attack on N = p2q via generalized key equation
eX −NY = Z − (ap2 + bq2)Y .

Lemma 2.1. (Asbullah, 2015). Let N = p2q with q < p < 2q. Let a, b be
suitable small integers with gcd(a, b) = 1. Let |ap2 − bq2| < N1/2. Let S be an

approximation of ap2 + bq2 such that |ap2 + bq2 − S| < |ap2−bq2|
3(ap2+bq2)N

1/3, then

abq =
[
S2

4N

]
.

Proof. See Asbullah (2015).

Theorem 2.3. (Asbullah, 2015). Let N = p2q with q < p < 2q. Let a,
b be integers with gcd(a, b) = 1 such that |ap2 − bq2| < N1/2. Let e be a
public exponent satisfying the equation eX − NY = Z − (ap2 + bq2)Y with

gcd(X,Y ) = 1. If 1 ≤ Y ≤ X < N1/2

2(ap2+bq2)1/2
and |Z| < |ap2−bq2|

3(ap2+bq2)N
1/3Y , then

N can be factored in polynomial time.

Proof. See Asbullah (2015).

3. The First Attack on k Moduli Ni = p2
iqi

In this section, we extend Asbullah (2015) work via Theorem 3.1. Suppose
that we are given k moduli Ni = p2i qi each with the same size N where N =
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mini Ni. We consider in this scenario, the k moduli satisfy k equations eix −
Niyi = zi − (ap2i + bq2i )yi. We show that it is possible to factor each moduli
Ni = p2i qi if the unknown parameters x, yi and zi are suitably small.

Theorem 3.1. Suppose k ≥ 2, Ni = p2i qi, 1 ≤ i ≤ k be k moduli each with the
same size N where N = min Ni. Assume ei, i = 1, ..., k be k public exponents.
De�ne δ = k−3αk

3(1+k) . Let a, b be suitable small integers with gcd(a, b) = 1 such

that ap2i +bq
2
i < N

2
3+α with 0 < α < 1/3. If exist an integer x < Nδ, k integers

yi < Nδ and |zi| < |ap2i−bq
2
i |

3(ap2i+bq
2
i )
N1/3yi such that

eix−Niyi = zi − (ap2i + bq2i )yi for i = 1, ..., k,

it is possible to factor k moduli Ni = p2i qi in polynomial time.

Proof. Suppose k ≥ 2 and i = 1, ..., k and the equation eix −
(
Ni − (ap2i +

bq2i )
)
yi = zi can be written as eix−Niyi = zi − (ap2i + bq2i )yi. Hence,∣∣∣ ei

Ni
x− yi

∣∣∣ = |zi − yi(ap2i + bq2i )|
Ni

(1)

Let N = min Ni and suppose that yi < Nδ and |zi| < |ap2i−bq
2
i |

3(ap2i+bq
2
i )
N1/3yi. Then,

|zi| < yiN
1/3 < Nδ+ 1

3 . We set ap2i + bq2i < N
2
3+α with 0 < α < 1/3, we will

get

|zi − yi(ap2i + bq2i )|
Ni

≤ |zi|+ yi(ap
2
i + bq2i )|

N

<
Nδ+1/3 +Nδ(N

2
3+α)

N

<
2Nδ+ 2

3+α

N

= 2Nδ− 1
3+α (2)

Plugging (2) in (1), we obtain∣∣∣ ei
Ni
x− yi

∣∣∣ < 2Nδ− 1
3+α

In order to show the existence of integer x, let ε = 2Nδ− 1
3+α, δ = k−3αk

3(1+k) . We

have
Nδ · εk = 2Nδ+kδ− k

3+αk = 2k
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Then, since 2k < 2
k(k−3)

4 · 3k for k ≥ 2, by Theorem 2.2 we get Nδ · εk <

2
k(k−3)

4 · 3k. It follows that if x < Nδ, then x < 2
k(k−3)

4 · 3k · ε−k. Next, for
i = 1, ..., k, we obtain∣∣∣ ei

Ni
x− yi

∣∣∣ < ε, x < 2
k(k−3)

4 · 3k · ε−k

If the condition of Theorem 2.2 are ful�lled, then this lead us to �nd x and yi

for i = 1, ..., k. Next, using the equation eix −
(
Ni − (ap2i + bq2i )

)
yi = zi, we

get

(ap2i + bq2i )−Ni +
eix

yi
=
zi
yi

Since |zi| < |ap2i−bq
2
i |

3(ap2i+bq
2
i )
N1/3yi then

zi
yi
<

|ap2i−bq
2
i |

3(ap2i+bq
2
i )
N1/3 and Si = Ni − eix

yi

is an approximation of ap2i + bq2i . Hence, by using Lemma 2.1 and Theorem

2.3, this implies that abq =
[
S2

4N

]
for Si = Ni − eix

yi
, i = 1, ..., k, we compute

qi = gcd
([

S2
i

4Ni

]
, Ni

)
. Therefore, it is possible us to factor k moduli N1, ..., Nk.

This terminates the proof.

Example 3.1. As an illustration of our proposed attack, we consider the fol-
lowing three moduli and three public exponents

N1 = 38766793043973056650120588787,

N2 = 45445634944027927233891675611,

N3 = 42881788164315807121880899517,

e1 = 11445434121307351203704920635,

e2 = 16591263529706116584260899637,

e3 = 29540787363439686965379129518.

Then, N = min(N1, N2, N3) = 38766793043973056650120588787. Suppose k =

3, we obtain δ = k−3αk
3(1+k) = 1

10 and ε = 2Nδ− 1
3+α ≈ 0.2228852521821256. By

using (5) from the proof of Theorem 2.2 and n = k = 3, we �nd

C =
[
3n+1 · 2

(n+1)(n−4)
4 · ε−n−1

]
= 16410.

Consider the lattice L spanned by the rows of the matrix

M =


1 −[Ce1/N1] −[Ce2/N2] −[Ce3/N3]
0 C 0 0
0 0 C 0
0 0 0 C

 .
Malaysian Journal of Mathematical Sciences 81
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Next, applying the LLL algorithm to lattice L leads to the reduced basis together
with the matrix as follows

K =


315 270 300 210
−874 −124 470 876
556 −2024 790 6
1318 −902 −1610 1608

 .

Now, we obtain

K ·M−1 =


315 93 115 217
−874 −258 −319 −602
556 164 203 383
1318 389 481 908

 .
According to the �rst row of the above matrix, we obtain x = 315, y1 = 93,
y2 = 115 and y3 = 217. By applying x and yi for i = 1, 2, 3, we look at the
relation Si = Ni− eix

yi
is an approximation of ap2i+bq

2
i . Hence, by using Lemma

2.1 and Theorem 2.3, this implies that abq =
[
S2

4N

]
for Si = Ni − eix

yi
. Then,

we obtain [
S2
1

4N1

]
= 17739468498,[

S2
2

4N2

]
= 18704727714,[

S2
3

4N3

]
= 18346150398.

For each i = 1, 2, 3, we �nd qi = gcd
([

S2
i

4Ni

]
, Ni

)
and we obtain

q1 = 2956578083, q2 = 3117454619, q3 = 3057691733.

It is possible to factor three moduli N1, N2 and N3 since

p1 = 3621056167, p2 = 3818088737 p3 = 3744894557.

4. The Second Attack on k Moduli Ni = p2
iqi

In this section, we consider the scenario when k moduli of the formNi = p2i qi
satisfy k equations of the form eixi − Niy = zi − (ap2i + bq2i )y where the
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parameters xi, y and zi are suitably small unknown parameters.

Theorem 4.1. Suppose that k ≥ 2 and Ni = p2i qi, 1 ≤ i ≤ k be k moduli
each with the same size N where N = max Ni. Assume ei, i = 1, ..., k be k

public exponents with min ei = Nβ. De�ne δ = k(3β−2−3α)
3(k+1) . Let a, b be suitable

small integers with gcd(a, b) = 1 such that such that ap2i + bq2i < N
2
3+α with

0 < α < 1/3. For i = 1, ..., k, if there exist k integer xi < Nδ, an integer

y < N δ and |zi| < |ap2i−bq
2
i |

3(ap2i+bq
2
i )
N1/3y such that

eixi −Niy = zi − (ap2i + bq2i )y,

then it is possible to factor k moduli Ni = p2i qi in polynomial time.

Proof. Suppose k ≥ 2 and i = 1, ..., k, the equation eixi−
(
Ni−(ap2i +bq2i )

)
y =

zi can be written as eixi −Niy = zi − (ap2i + bq2i )y. Hence,∣∣∣Ni
ei
y − xi

∣∣∣ = |zi − y(ap2i + bq2i )|
ei

(3)

Let N = max Ni and suppose that y < Nδ and |zi| < |ap2i−bq
2
i |

3(ap2i+bq
2
i )
N1/3y. Then,

|zi| < yN1/3 < N δ+ 1
3 . Also, suppose that min ei = Nβ . We set ap2i + bq2i <

N
2
3+α with 0 < α < 1/3, then we will get

|zi − y(ap2i + bq2i )|
ei

≤ |zi|+ y(ap2i + bq2i )|
Nβ

<
Nδ+1/3 +Nδ(N

2
3+α)

Nβ

<
2Nδ+ 2

3+α

Nβ

= 2Nδ+ 2
3α−β (4)

Plugging (4) in (3), we obtain∣∣∣Ni
ei
xi − y

∣∣∣ < 2Nδ+ 2
3α−β .

In order to show the existence of integer y and the integers xi, let ε = 2Nδ+ 2
3α−β ,

δ = k(3β−2−3α)
3(k+1) . Then, we obtain

Nδ · εk = Nδ(2Nδ+ 2
3α−β)k = 2

k
2 (Nδ+δk+ 2

3k+αk−βk) = 2k.
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Then, since 2k < 2
k(k−3)

4 · 3k for k ≥ 2, by Theorem 2.2 we get Nδ · εk <

2
k(k−3)

4 · 3k. It follows that if y < Nδ, then y < 2
k(k−3)

4 · 3k · ε−k. Next, for
i = 1, ..., k, we get ∣∣∣Ni

ei
y − xi

∣∣∣ < ε, y < 2
k(k−3)

4 · 3k · ε−k.

It follows the condition of Theorem 2.2 are ful�lled will �nd y and xi for

i = 1, ..., k. Next, using the equation eixi −
(
Ni − (ap2i + bq2i )

)
y = zi, we get

(ap2i + bq2i )−Ni +
eixi
y

=
zi
y

If |zi| < |ap2i−bq
2
i |

3(ap2i+bq
2
i )
N1/3y, then |zi|y <

|ap2i−bq
2
i |

3(ap2i+bq
2
i )
N1/3 and Si = Ni − eixi

y is

an approximation of ap2i + bq2i . Hence, by using Lemma 2.1 and Theorem 2.3,

this implies that abq =
[
S2

4N

]
for Si = Ni − eixi

y , i = 1, ..., k, we compute

qi = gcd
([

S2
i

4Ni

]
, Ni

)
. Therefore, it is possible us to factor k moduli N1, ..., Nk.

This terminates the proof.

Example 4.1. For illustration of our proposed attack, we consider three moduli
and public exponents as follows

N1 = 37159722696095612510782748953,

N2 = 19474173499329799030609546903,

N3 = 61284862609699996705266409589,

e1 = 17181377136985024142431807113,

e2 = 11794217733042502682464813542,

e3 = 43200804740271910086906145446.

Then, N = max(N1, N2, N3) = 61284862609699996705266409589. We ob-
tain min(e1, e2, e3) = Nβ with β ≈ 0.9751389. If k = 3, then we have

δ = k(3β−2−3α)
3(k+1) = 0.08135420600 and 2Nδ+ 2

3α−β ≈ 0.331415314079361. By

using (5) in the proof of Theorem 2.2 and consider n = k = 3, leads to

C =
[
3n+1 · 2

(n+1)(n−4)
4 · ε−n−1

]
= 3357.

Consider the lattice L spanned by the rows of the matrix
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M =


1 −[CN1/e1] −[CN2/e2] −[CN3/e3]
0 C 0 0
0 0 C 0
0 0 0 C

 .
Next, applying the LLL algorithm to lattice L leads to the reduced basis together
with the matrix as follows

K =


−43 −21 −41 −11
−289 15 349 −152
−26 768 −259 −397
653 −696 −80 −1004

 .

Now, we obtain

K ·M−1 =


−43 −93 −71 −61
−289 −625 −477 −410
−26 −56 −43 −37
653 1412 1078 926

 .
According to the �rst row of the above matrix, we obtain y = 43, x1 = 93,
x2 = 71 and x3 = 61. By applying y and xi for i = 1, 2, 3, we look at the
relation Si = Ni − eixi

y is an approximation of ap2i + bq2i . Hence, by using

Lemma 2.1 and Theorem 2.3, this implies that abq =
[
S2

4N

]
for Si = Ni − eixi

y .

Then, we obtain [
S2
1

4N1

]
= 17490871878,[

S2
2

4N2

]
= 14101767402,[

S2
3

4N3

]
= 20665143966.

For each i = 1, 2, 3, we �nd qi = gcd
([

S2
i

4Ni

]
, Ni

)
and we obtain

q1 = 2915145313, q2 = 2350294567, q3 = 3444190661.

It is possible to factor three moduli N1, N2 and N3 since

p1 = 3570311659, p2 = 2878514153, p3 = 4218256807.
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5. Conclusion

In conclusion, this paper presents two new attacks on k moduli Ni = p2i qi.
We focus on the system of generalized key equations of the form eix−Niyi =
zi−(ap2i +bq

2
i )yi for the �rst attack and the form eixi−Niy = zi−(ap2i +bq

2
i )y

for the second attack. We show that both of the attacks are successful when
the parameters x, xi, y, yi and zi are suitably small. On top of that, we also
prove that our attacks enables us to factor k moduli of the form Ni = p2i qi
under our conditions simultaneously based on the LLL algorithm.
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Appendix

Proof of Theorem 2.2.

Proof. Let ε ∈ (0, 1). Set

C =
⌈
3n+1 · 2

(n+1)(n−4)
4 · ε−n−1

⌉
(5)

where dxe is the integer greater than or equal to x. Consider the lattice L
spanned by the rows of the matrix

M =


1 −[Cα1] −[Cα2] · · · −[Cαn]
0 C 0 · · · 0
0 0 C · · · 0
...

...
...

. . .
...

0 0 0 · · · C

 .

where [x] is the nearest integer to x. The determinant of L is det(L) = Cn and
the dimension is n + 1. Applying the LLL algorithm, we �nd a reduced basis
(b1, ..., bn+1) with

‖b1‖ ≤ 2n/4det(L)1/(n+1) = 2n/4Cn/(n+1).
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Since b1 ∈ L, we can write b1 = ±[q, p1, p2, ..., pn]M , that is

b1 = ±[q, Cp1 − q[Cα1], Cp2 − q[Cα2], ..., Cpn − q[Cαn]], (6)

where q > 0. Hence, the norm of b1 satis�es

‖b1‖ =
(
q2 +

n∑
i=1

|Cpi − q[Cαi]|2
)1/2

≤ 2n/4Cn/(n+1),

which leads to

q ≤
⌊
2n/4Cn/(n+1)

⌋
and maxi |Cpi − q[Cαi]| ≤ 2n/4Cn/(n+1). (7)

Let us consider the entries qαi − pi. We have

|qαi − pi| =
1

C
|Cqαi − Cpi|

≤ 1

C
(|Cqαi − q[Cαi]|+ |q[Cαi]− Cpi|)

=
1

C
(q|Cαi]− [Cαi]|+ |q[Cαi]− Cpi|)

≤ 1

C

(1
2
q + |q[Cαi]− Cpi|

)
.

Using the two inequalities in (7), we get

|qαi − pi| ≤
1

C

(1
2
· 2n/4Cn/(n+1) + 2n/4Cn/(n+1)

)
=

3 · 2(n−4)/4

C1/(n+1)

Observe that (5) gives

3n+1 · 2
(n+1)(n−4)

4 · ε−n−1 ≤ C ≤≤ 3n+1 · 2
(n+1)(n−3)

4 · ε−n−1, (8)

which leads to ε ≥ 3·2(n−4)/4

C1/(n+1) . As a consequence, we get |qαi − pi| ≤ ε. On the
other hand, using (7) and (8), we get

q ≤
⌊
2n/4Cn/(n+1)

⌋
≤ 2n/4Cn/(n+1) ≤ 2n(n−3)/4 · 3n · ε−n.

To compute the vector [q, p1, p2, ..., pn], we use (6)

[q, p1, p2, ..., pn] = ±[q, Cp1 − q[Cα1], Cp2 − q[Cα2], ..., Cpn − q[Cαn]]M−1.

This terminates the proof.
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